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AMS Measurements: Objectives

1. Demonstrate the Aerodyne-AMS technique has sufficient
sensitivity and time-response to make in-flight chemical
composition measurements of the volatile coatings on
aircraft soot emissions

2. Assess the variability in aerosol composition for different

fuels:
« QOrganic mass fraction
« Qrganic oxidative state

3. Assess the contribution of lubrication oils to volatile
organic emissions




AMS Repackaging for Flight

1-inch 80/20 structure not
suitable for aircraft deployment

53-inch height cannot fit in
smaller aircraft (NASA Falcon)

Single-body mounting is not
practical for integration

Weight = 430 Ibs.

Custom, aircraft-rated hardware
manufactured by WMD,Inc.

Structural analysis provided
Height reduced to 35-inch

3 independent structures can be
integrated separately.

Weight = 492 Ibs. including CPC




AMS Measurement Technique: Sampling

180-um pinhole

Ya-inch SS

HR-ToF-AMS

Ya-inch
conductive
silicone

CPC-3010

AMS-rack

=L From
3/8-inch OD copper Himel Inlet

Actively pressure-(P)-controlled
at 180 torr (240mb)

Conductive silicone tubing
minimized to reduce AMS-
artifact

CPC used to decrease
residence time during transport
to AMS; also provides
redundant measurement




AMS Measurement Technique

TOF Mass Spectrometer

f

Aerodynamic
Lens
(2 Torr)

Turbo

Pump
Particle Inlet

(1 atm)

“ LR

i
PToF Region

Turbo
Pump

Thermal
Vaporization
&

70 ev El

' lonization
Turbo

Pump

« Size-resolved chemical composition of non-refractory aerosols




AMS Measurement Technique: Limitations

e * AMS only observes non-refractory
* AMS lower-size limit is ~60nm aerosol mass, volatile at 600°C

diameter ** suitable for ambient obs. when

** Suitable for most ambient BC contribution is < 5%

observations of aerosol mass w* Not optimal for aircraft

** Not optimal for observing aircraft emissions depending on thrust
emissions due to small particle size
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AMS Measurement Technique: FAST-MS Mode

AMS is typically operated in
alternating mode: cycling between
open-MS, closed-MS, and pTOF
modes (> 1 minute save rates)

- Allows sufficient signal-to-noise . JJUL U Lo

- fast response is not necessary A [urmcows ]
for ground applications First20pen

First2Closed

3 full measurement cycles

blacklist

Fast-mode saves data at 1 Hz
SaCI’IfICeS SNR for faSt response 1553:202?;:1545 19:04:00 19:04:05 19:04:10 19:04:15 19:04:20 19:04:25
No particle sizing is obtained

Relies on ‘stable’ conditions for a 10-sec period to accurately calculate
difference spectra and obtain particle-phase composition




AMS Measurement Technique: MS Apportionment
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Boundary-Layer Palmdale Organics

Nitrate
Sulfate

AMS uses known
fragmentation patterns to
apportion mass-spectral peaks

Nitrate equivalent mass (g m )

to common aerosol types
100 120
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Nitrate equivalent mass (g m )

Organics
Nitrate
Sulfate

m/z44 is typically dominant for
ambient aerosol (oxidized
organics).

* m/z44 must be corrected

using a measurement of
CO, for aircraft emissions "

Generally similar contributions in free
troposphere as BL

* Increased nitrate importance at low temp.




AMS Measurements: First Flight (5/7)
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Date and Time

Background Conditions: Exhaust Plumes:

102 cm3 e 104cm>

Organics = 0.28 + 0.25 pg m-3 « Organics =1.0-2.5ugm3
Sulfate = 0.18 £ 0.06 pg m3 e Sulfate =0.5-1.0 uyg m3
Nitrate = 0.09 = 0.04 ug m3 * Nitrate ~ 0.1 ug m-3

Preliminary




AMS Measurements: First Flight
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Date and Time

Background:
« 386 ppm CO,
« Organics ~ 39% (mass)
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JP-8 Plume:
* 4 save periods
« A 150 ppm CO,
« Organics ~ 67% (mass)
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AMS Measurements:
Fuel Properties Alter Aerosol Composition

ACCESS-II
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1.0 5 AAFEX - ground
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Low-S JetA High-S JetA - JP-8 Fuel

0.9 —

Organic compounds dominate the Low-S -

JetA and HEFA-blend emissions (~90%)
Sulfate contribution is increased for JetA

0.7 —

Organic Mass Fraction

0.6 —

Results are gualitatively consistent with noon
ground-based measurements at higher 0 60 80

engine thrust . Engine Thrust (%)
Preliminary




AMS Measurements: Extent of Organic Oxidation
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m/z44 (CO,*) used as a tracer for
oxidized organics

Enhanced CO, from combustion
significantly impacts organic aerosol
guantification

After correction, organic aircraft
emissions still contain oxygenated
compounds (15% of organic signal)

Ratio of m44 to m57 is a general
indicator of the state of oxidation




AMS Measurements: Aerosol Extent of Oxidation

CO," C,Hy"
2 /49

m/z 44/57 used as a proxy for the extent of organic oxidation

Preliminary

Contrail

Ambient Aerosol
mz44/57: 5-20

Plume Count
Plume Count

High-S JetA
| | | N | -
0 2 4 6
Extent of Oxidation Extent of Oxidation
(m/z 44/57) (m/z 44/57)

» No significant difference « Organic coatings are more
observed between fuels oxidized for NON-contrail (clear)
Oxygen content LOW conditions
compared to ambient Contrail may alter aerosol

aerosols composition by removal of more-
soluble compounds




AMS Measurements: Lubrication Oil Contribution
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0.66

mz85/71 values >> 0.66 = lube-oils

Data from all flights shows significant
contribution throughout ACCESS-2

« Must identify the oil used during
ACCESS to quantify contribution

Both engines exhibit similar lube-oil

impacts
[Yu et al. 2010, 2012]
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Conclusions and Future Work

The AMS technique is able to sufficiently resolve near-field
aircraft emissions plumes

Measured volatile coatings are dominated by organic

compounds

« Low-sulfur HEFA and JetA fuels (11 and 8%) resulted in
significantly less sulfate than High-S JetA fuel (30%)

Fuels had similar contribution from oxygenated compounds
« Oxygenated (water-soluble) compounds may be
preferentially removed in contrail conditions

Lubrication oil was likely a dominant fraction of measured
organic mass

Thanks: NASA , ACCESS-II collaborators, LARGE team and aircraft crews!




